Surname			Centre Number	Candidate Number
Other Names				2
	GCE AS – NEW			
wjec cbac	B420U20-1	III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	III Part of	duqas
	PHYSICS – AS c	omponent 2		

PHYSICS – AS component 2 Electricity and Light

THURSDAY, 8 JUNE 2017 – AFTERNOON

1 hour 30 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	7			
2.	8			
3.	13			
4.	12			
5.	16			
6.	8			
7.	11			
Total	75			

PMT

B420U201 01

ADDITIONAL MATERIALS

In addition to this paper, you will require a calculator and a Data Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 75.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded to show all working. Credit is given for correct working even when the final answer is incorrect.

The assessment of the quality of extended response (QER) will take place in **Q6**(*a*).

Examiner only

2

1.

		Potential difference / mV
		-0.5
(a)	Sour	nd is a longitudinal wave. State what is meant by a longitudinal wave. [2]
 	Dete	ermine the amplitude of the signal shown. [1]
(c)	(i)	In order to probe muscle tissue in the human body, ultrasound is used with a wavelength of 0.40 mm and a speed in muscle of $1580 \mathrm{ms^{-1}}$. Calculate the frequency of this ultrasound. [1]
	(ii) 	Evaluate whether the sound wave detected by the microphone as shown above can be used to probe muscle tissue. [3]

© WJEC CBAC Ltd.

7

© WJEC CBAC Ltd.

3. Abigail investigates how the power dissipated in a variable resistor varies as its resistance is altered. The diagram shows the circuit that Abigail uses (meters not shown). The variable resistor is connected to a battery of emf, *E*, and internal resistance, *r*.

Abigail obtains the following data as the resistance is varied from 0.5Ω to 6.0Ω .

Resistance, R / Ω	Power dissipated in R / W
0.5	2.5
1.0	3.3
2.0	3.8
3.0	3.8
4.0	3.7
5.0	3.6
6.0	3.5

	6		
(b)	The emf of the battery is 6.0 V and the resista	ance, R , is now set at 4.5 Ω .	Examiner only
	(i) State what is meant by an <i>emf</i> of 6.0 V	. [2]	
	(ii) Calculate the current through the batte	ry using data from your graph. [3]	
	(iii) Calculate the internal resistance, r, of the second se	he battery. [3]	
(C)	Abigail repeats the experiment but with a bar resistance. Explain how the graph would cha	attery of the same emf but smaller internal nge. [2]	
			13

© WJEC CBAC Ltd.

(B420U20-1)

(a)	Calc 0.50 elect	culate the mean drift velocity of the free electrons in a wire, which has a diameter of mm and carries a current of 2.8 A. Assume each aluminium atom contributes 3 free trons, and there are 6.0×10^{28} atoms per m ³ of aluminium. [4]
······		
(b)	The	wire is thinner in a small section as shown below.
	Paul be g	a claims that within the thinner section the mean drift velocity of the free electrons will reater. Evaluate whether she is correct. [3]
(c)	(i)	State what is meant by a superconductor. [1]
	(ii)	State and explain one advantage and one disadvantage of using superconductors to carry large currents. [4] <i>Advantage</i> :
		Disadvantage:
	••••••	© WJEC CBAC Ltd. (B420U20-1) Turn over.

	(ii) Determine the distance from X to the next dark fringe formed.	[2]	Examiner only
(C)	Explain the historical significance of this experiment.	[2]	
(d)	A beam of electrons is fired at a thin sheet of aluminium. A pattern of light and circular fringes is observed as shown below.	l dark	
	(i) Explain how this pattern is formed.	[2]	
	(ii) The thin sheet of aluminium is replaced with a foil of copper. The distance be the copper atoms is smaller than in aluminium. Describe how you expect the p to change.	tween attern [2]	
	© WJEC CBAC Ltd. (B420U20-1) Turn	over.	16

6.	(a)	Describe an experiment using a range of LEDs to determine the Planck constant. [6 QER]	Examiner only
	·····		
	(b)	A university research group uses a new experimental method to determine a value for the Planck constant that is higher than the accepted value of 6.63×10^{-34} Js. Explain how other scientists would attempt to confirm this result. [2]	
	·····		
		© WJEC CBAC Ltd. (B420U20-1)	8

Examiner

7.	When sunlight shines on the atmosphere of Mars, carbon dioxide molecules at a height of	only
	75 km behave like the amplifying medium in a laser. The energy levels involved are shown in the	
	following diagram. A population inversion occurs between energy levels E_1 and E_2 .	

						Pumped level $E_2 = 0.289 \text{ eV}$ $E_1 = 0.165 \text{ eV}$	
						E ₀ = 0	
(a)	(i)	State what is	s meant by a p	opulation inve	rsion.		[1]
	(ii)	Explain why	a population ir	nversion is ne	eded for laser	action.	[2]
(b)	Calc of th	culate the outp ne electromagr	ut wavelength onetic spectrum	of this naturall in which it lies	y occurring las	ser and determir	ne the region [3]
		TURN O	VER FOR THE	E LAST PART	OF THE QUI	ESTION	

(C)	The Llanesco crater is on the surface of Mars and has a cross-sectional area of 2290 km^2 . Carbon dioxide molecules in the Mars atmosphere collide with the surface and give rise to a surface pressure of 600 Pa. The mass of a carbon dioxide molecule is 7.3×10^{-26} kg and the perpendicular component of the speed of the molecules to the surface is 550 ms^{-1} before and after they collide with the surface. Calculate the number of carbon dioxide molecules that collide with the Llanesco crater in 1 s. [5]	Examiner only
•••••		
•••••		
•••••		
•••••		
•••••		

END OF PAPER

11